Cooperative Engagement Capability Sensor Adaptation for Sensor Netting

Elinor Fong
Jonathan Entner
William Bath

Sensor Netting Composite Tracking Concept

CEC Nets Sensors, Exchanges Sensor Measurements Between all Netted Sensors, and Fuses Data to Create a Composite Track

Cooperative Engagement Capability

System Design

Why Adaptive Layers?

- To control false detection rate when many sensors combined (25 sensors in OPEVAL)
- To associate sensor data to composite track
- To accommodate many different interface standards
- To put the data in a common format
 - Adaptive Layer permits CEC to interface with dissimilar systems while maintaining a common set of code (Kernel Functions)
- To limit cost of modifying existing systems
 - Accommodates sensor-specific and command/weapon-specific characteristics and performance
 - false alarm and false track rate
 - available types of information
 - track reporting rates
 - system time reference

Adaptive Layers Regulate False Data Rate into the Network Ensuring an Uncluttered Picture

False Alarm Control Example

Evolution of CEP Core and Adaptive Layer

- During the Development Stages of CEC, the requirements and design of the Adaptive Layer were developed individually for each sensor
 - Required modifications to core functions
- Process evolution includes
 - Sensor invariant Core Functions
 - Common Integration standards for Sensors
 - Message Definition standards for Sensor/CEP Interface
 - Adaptive Layer Functional and Performance Requirements
 - Re-allocation of Adaptive Layer and Core functions
 - Reduction of Adaptive Layer functionality
 - Information Package
 - CEC Sensor Integration Background
 - CEC Information
 - Sensor Information Request

CEP Sensor Invariance

CEP Kernel processing is sensor invariant:

Does not require change as new sensors added

Time sequence:

- Registration message sent for each sensor at startup/network change
- CEP Kernel keeps a record of registration messages from all sensors in network
- As targets detected, CEP Kernel uses sensor messages to interpret sensor data

Demonstrated Sensor Invariance Usage

Standard Message Definition Ease IDD Development

Standard Functional Requirements

False Detection Control

- Disclosure
- Mean Time Between False Track (MTBFT)

Measurement to Track Association

- Provide measurements associated to composite track
- Support track continuity on maneuvering target
- Report each measurement as being associated to a single composite track
- Probability of false association
- Acceptance of composite track database on event driven basis
- Maintain separate tracks on targets when sensor is resolving

Sensor Invariant Formatting

- Sensor's reference frame
- Provide IFF mode or other sensor derived attributes
- Provide measurement accuracy

Support Functions

- Time Synchronization
- Test Points for test target injection
- Time Tag
- Support Cueing
- Support Requests for Tracking Support
 - Gridlock, track continuity, engagement
- Composite IFF support
 - Interrogation sectors, mode 4 interrogation policy, demand interrogations

Example of MTBFT Control Concept: SSDS Control of False Tracks/
False Self-Defense Actions

Initiate Tracks and Compute Initial MTBFT Tags Initialize and Update System MTBFT, Threshold MTBFT for Self-Defense Actions Execute Self-Defense Actions

Rotating Sensor False Track Disclosure Single Sensor and Netted Sensor Environments

Measurement Association

- Measurement to Track (composite or local) is a key performance driver for sensor netting
 - Misassociations can cause noisy composite tracks, dual composite tracks, false composite tracks
 - Missed associations can cause loss of composite track or composite track discontinuities

Measurement Association Example

Example of Association to Local Track

Example of Association to Composite Track

Association to Local vs. Composite

Expected
Range of
Gridlock
Performance

Measurement Association – Core Function?

New Process for Adaptive Layer Development

Command and Control System Adaptive Layers

The Challenge:

Track to Track **AEGIS** Correlation Local C² Composite SSDS **Single** Composite **Contact Index** E2C Correlation Local C² Composite